REFINEMENT OF TURÁN-TYPE INEQUALITY FOR A POLYNOMIAL
نویسندگان
چکیده
Let $p(z)$ be a polynomial of degree $n$. Then the polar derivative with respect to real or complex number $\alpha$ is defined by $D_\alpha p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$. Govil and Mctume [14] proved that if $n$ having all its zeros in $|z| \leq k, k \geq 1$, then for $|\alpha| 1+k+k^n$,$$\begin{aligned}\max _{|z|=1}\left|D_\alpha p(z)\right| & n\left(\frac{|\alpha|-k}{1+k^n}\right) \max _{|z|=1}|p(z)| \\& +n\left(\frac{|\alpha|-\left(1+k+k^n\right)}{1+k^n}\right) \min _{|z|=k}|p(z)| .\end{aligned}$$In this paper, we obtain refinement above inequality. Received: March 16, 2023Accepted: July 4, 2023
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Markov Type Polynomial Inequality for Some Generalized Hermite Weight
i=0 (n − i)‖p‖∞, p(x) ∈ Πn, 1 ≤ k ≤ n are typical examples of inequalities connecting norms of a polynomial and its derivatives. In (1.1) the equality holds only at x = ±1 and only when p(x) = cTn(x), where Tn(x) is the Chebyshev polynomial of the first kind of a degree n c © 2011 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 33C...
متن کاملRefinement of Hardy’s Inequality
We give a simple combinatorial proof of an inequality that refines Hardy’s inequality. As a corollary we obtain a corresponding refinement of Carleman’s inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Far East Journal of Mathematical Sciences
سال: 2023
ISSN: ['0972-0871']
DOI: https://doi.org/10.17654/0972087123014